
DCABES 2004 PROCEEDINGS 451

Implementing and Invoking a Remote Object Calling Native Methods
 via RMI-IIOP and JNI

Minglong QI, Qingping GUO, Luo ZHONG

School of Computer Science, Wuhan University of Technology
Ma Fang San Campus, 430070 Wuhan, China

Email: minglongqi@sina.com; Tel.: +86-(0)27-87292452

ABSTRACT

In this article, we discuss how to combine one of the distributed
computing technologies created by Sun Microsystems, called
RMI over IIOP, and its other famous technology, Java Native
Interface JNI. Sometimes in a distributed computing
application written entirely in Java, client side application need
to invoke native methods specific to a platform and encoded in
a another programming language (for example in C or
C++) .To do this, we must make a distributed computing
solution that can integrate native applications in Java. We think
that Sun's RMI over IIOP and JNI is a good choice. The first
reason is that, RMI over IIOP takes advantage of both RMI
(easy to use and encoding uniquely in Java), and IIOP
(interoperability with another CORBA ORB products). In
addition to this, we can switch transport protocols from JRMP
(Java Remote Method Protocol) to IIOP (Internet Inter-ORB).
The second reason is that, JNI cannot only integrate native
applications in Java, but can also embed JVM implementation
in a native application. To demonstrate the combination
between RMI-IIOP and JNI, we have developed a typical
example: on the server side, implementation of a remote
interface method create an instance of a Java class and called
its native method, whose implementation use JNI and Borland
InterBase C API to extract a database table. On the client side it
invoked this remote object and displays the database table.

Keywords: RMI-IIOP, JNI, InterBase API, CORBA, ORB.

