Distributed Cluster-based Solution Techniques for Dense Linear Equations^{*}

Gu Zhimin¹ and Marta Kwiatkowska² ¹School of Information Science and Technology, Beijing Institute of Technology Beijing 100081, P. R. China Email: zmgu@x263.net ²School of Computer Science, University Of Birmingham, Birmingham B15 2TT, United Kingdom Email: M.Z.Kwiatkowska@cs.bham.ac.uk

ABSTRACT

In many applications, very large matrixes need be solved, however single or multiprocessor system have some limitations on computing resources, this problem was not solved better. This paper discuss a distributed cluster-based solution for dense linear equations, our works included the definitions of notations, Partition of matrix, communication mechanism, improving of the Guassian Elimination and a master-slaver algorithm etc., the computing cost is $O(n^3/N)$, the memory cost is $O(n^2/N)$, the I/O cost is $O(n^2/N)$, and the communication cost is O(N*n), here, n is the grade of matrix, N is the number of computing nodes or processes. We show that our distributed cluster-based solution techniques for dense linear equations could solve the double type of Matrix under $10^{6*}10^{6}$ effectively.

Keywords: Gaussian Elimination, Cluster-based distributed computing

^{*} This paper is supported in part by CSC of China under grand 21307D05 and by fundament science foundation of BIT and by the university of Birmingham.